Chem 116 Lecture 16 (JL) 10-28-08

Higher entropy = more disorder.

Lower entropy = more order.

Reaction will take place in the phase where the highest entropy (therefore most disordered) is.

A simple example of using ICE

Practice Exercise on p. 645

Sulfur trioxide decomposes at high temperature in a sealed container:

$$2 SO_3(g) \stackrel{\leftarrow}{\Rightarrow} 2 SO_2(g) + O_2(g)$$

Initially, the vessel is charged at 1000 K with $SO_3(g)$ at a partial pressure of 0.500 atm. At equilibrium, the SO_3 partial pressure is 0.200 atm. Calculate the value of K_p at 1000 K.

partial pressures	2 SO ₃ (g)	≒	2 SO ₂ (g)	+	O ₂ (g)	
Initial	0.500 atm		0 atm		0 atm	
Change	- 2x		+ 2x		+ x	
Equilibrium	0.200 = 0.500 - 2	x	2x		x	

Solve to get x = 150atm.

So at equilibrium $Pso_4 = 2x = .300$ atm and $Po_2 = 0.150$ atm.

$$Kp = \frac{(Pso_4)^2(Po_2)}{(Pso_3)^2} = \frac{(0.300)^2(0.150)}{(0.200)^2}$$

Kp = 0.388 (there is no unit)

If you know the value of K_c and the initial conditions you can figure out the final concentrations – Use an ICE table

To complement Practice Exercises on pp. 644-645

At some temperature, K_c = 33 for the reaction

$$H_2(g) + I_2(g) \leftrightarrows 2 HI(g)$$

If the initial concentrations of both $\rm H_2$ and $\rm I_2$ are 6.00 \times 10⁻³ mol/L, find the concentration of each reactant and product at equilibrium.

Molarity	$H_2(g)$ +	$\mathrm{I}_{2}\left(g\right)$	≒	2 HI (g)
Initial	$6.00 \times 10^{-3} M$	$6.00 \times 10^{-3} \text{ M}$		0 M
Change	- X	- x		+ 2 <i>x</i>
Equilibrium	$(6.00 \times 10^{-3}) - x$	$(6.00 \times 10^{-3}) - x$		2x

Q initially =
$$\frac{[HI]^2}{[H_2][I_2]}$$
 = $\frac{0}{(0.006)^2}$ = 0

Generally speaking it's a good idea to calculate initial Q and compare to K. If $Q_{initial} < K$, then products \uparrow and reactants \downarrow . If $Q_{initial} > k$, then opposite direction.

$$K = 33 = \frac{[HI]^2}{[H_2][I_2]}$$

$$= \frac{(2x)^2}{(0.006-x)(0.006-x)}$$

$$= \frac{(2x)^2}{(0.006-x)^2}$$

$$= \left(\frac{2x}{0.006-x}\right)^2$$

$$\sqrt{33} = \sqrt{\left(\frac{2x}{0.006-x}\right)^2}$$

$$X = 0.00445.$$

$$[HI] = 2x = 2 (0.00445) \\ = 0.00890M \\ [H_2] = 0.00600 - x = 0.00155M \\ [I_2] ... same as H_2$$